FACULTY OF ENGINEERING

Scheme of Instruction & Examination

and

Syllabi

B.E. V and VI Semesters

of

Four Year Degree Programme

in

ELECTRICAL & ELECTRONICS ENGINEERING

(With effect from the Academic Year 2018 – 2019)
(As approved in the Faculty Meeting held on 26th June 2018)

Issued by

Dean, Faculty of Engineering
Osmania University, Hyderabad
July 2018
SCHEME OF INSTRUCTION & EXAMINATION

B.E. V – Semester

(ELECTRICAL AND ELECTRONICS ENGINEERING)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>1.</td>
<td>PC501EE</td>
<td>Power Systems-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>PC502EE</td>
<td>Electrical Machines-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>PC503EE</td>
<td>Electrical Measurements and Instrumentation</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>PC504EE</td>
<td>Linear Control Systems</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>PC505EE</td>
<td>Digital Signal Processing and Applications</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>PE-1</td>
<td>Professional Elective-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>MC901EG</td>
<td>Gender Sensitization</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Practical / Laboratory Course

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>8.</td>
<td>PC551EE</td>
<td>Electrical Machines Lab-I</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>PC552EE</td>
<td>Power Electronics Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>PC553EE</td>
<td>Circuits & Measurements Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>21</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Professional Elective-I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE501EE</td>
<td>Programmable Logic controllers</td>
</tr>
<tr>
<td>PE502EE</td>
<td>Electronic Instrumentation</td>
</tr>
<tr>
<td>PE503EE</td>
<td>FACTS Devices</td>
</tr>
</tbody>
</table>

PC: Professional Course **PE**: Professional Elective **MC**: Mandatory Course
L: Lecture **T**: Tutorial **P**: Practical **D**: Drawing
CIE: Continuous Internal Evaluation **SEE**: Semester End Examination (Univ. Exam)

Note:
1. Each contact hour is a Clock Hour
2. The duration of the practical class is two clock hours, however it can be extended wherever necessary, to enable the student to complete his experiment
Course Code | Course Title | Core / Elective
--- | --- | ---
PC501EE | POWER SYSTEMS-II | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours Per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Systems-I</td>
<td>L T D P</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives
- The student able to learn and understand the performance analysis of transmission lines and cables.
- To be able to comprehend analysis of symmetrical and unsymmetrical faults in the power system.

Course Outcomes
At the end of the course students will be able to
- Acquire modeling of different short, medium and long transmission lines
- Understand the impact of different types of faults on overhead transmission lines and calculation of fault currents and their significance.
- Explain the reasons for voltage variation, importance of maintaining constant voltage in power system and different voltage control methods.
- Acquire the knowledge of natural impedance of transmission line and significance in the operation of power system network.

UNIT-I
Transmission Line Theory: Performance of short, medium, long lines, Line calculations, Tuned lines, Power circle diagram and their applications.
Corona – Causes, Disruptive and Visual critical voltages, Power loss, Minimization of corona effects.

UNIT-II
Symmetrical Faults: Use of per unit quantities in power systems, advantages of per unit system. Symmetrical Three-phase Faults, Transients in RL series circuits, Short circuit currents, Reactance’s of synchronous machines, Symmetrical fault calculations, Short circuit capacity of bus.

UNIT-III
Unsymmetrical Faults: Symmetrical components of unsymmetrical phasors, Power in terms of symmetrical components, Sequence impedance and sequence networks, Sequence networks of unloaded generators, Sequence impedances of circuit elements, Single line to ground, line to line and double line to ground faults on unloaded generator, Unsymmetrical faults of power systems, Open circuit faults.

UNIT-IV
Voltage Control: Phase modifiers, Induction Regulators, Tap changing Transformers, Series and Shunt Capacitors, Reactive Power requirement calculations, Static VAR compensators, Thyristor Controlled reactor, Thyristor switched capacitor.
UNIT-V

Travelling Wave Theory: Causes of over voltages, Travelling wave theory, Wave equation, Open circuited line, The short circuited line, Junction of lines of different natural impedances, Reflection and Refraction Coefficients, Junction of cable and overhead lines, Junction of three lines of different natural impedances, Bewley Lattice diagram.

Suggested Readings:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC502EE</td>
<td>Electrical Machines – II</td>
<td>Core</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Machines - I</td>
<td>L T D P</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
- To be able to understand in detail about transformers and induction machines. Construction, principle, performance characteristics and testing.
- To understand the construction, principle and performance characteristics of fractional HP motors.

Course Outcomes
- Explain the rating, testing and applications of single phase, three phase transformers
- Acquire the knowledge of Rotating magnetic field theory, Double field revolving theory
- Develop equivalent circuit diagram of transformer, three phase induction motor and single phase induction motor.
- Develop Slip-torque characteristics of single phase and three phase induction motors
- Demonstrate knowledge of Starting methods, Speed control methods and applications of single and three phase induction motors.

UNIT-I
Single Phase Transformers: Constructional features of single phase transformers, principle of two winding transformer, ideal transformer, transformer on no load and on load, phasor diagrams equivalent circuits, losses, Testing, a Polarity test, OC and SC tests, Sumpner's test, Regulation and efficiency, All day efficiency, separation of losses, Excitation phenomena in transformers, Auto transformer, Comparison with two winding transformer and applications.

UNIT-II
Three - Phase Transformers: Connections, Choice of transformer connections, Third harmonic voltages, Phase conversion, 3-phase to 2-phase transformation, Scott connection, constructional features of poly phase transformers, Tertiary winding, Parallel operation of transformers, phase shifting transformer, Tap changer.

UNIT-III
Three - Phase Induction Motor: Constructional features, Rotating magnetic field theory, Principle of operation of Squirrel cage and Slip ring motors, Phasor diagram, Equivalent Circuit, expression for torque, starting torque, Max torque. Slip-torque characteristics, Equivalent circuit parameters from no-load and blocked rotor test, Circle diagram, Determination of performance characteristics of induction motor, Applications.

UNIT-IV

UNIT-V
Suggested Readings:
Course Code	Course Title	Core / Elective
PC503EE | Electrical Measurements and Instrumentation (Common to EEE and EIE) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives
- To learn and understand the fundamental concepts, principle of operation and applications of various electrical measuring instruments.
- To understand various types of Bridges in measurement of resistance, inductance, capacitance and frequency.
- To understand the operation and applications of Ballistic Galvanometer, Flux meter and DC/AC Potentiometer.
- To understand the application of CRO for measurement of amplitude, phase and frequency of sinusoidal signals.

Course Outcomes
At the end of the course students will be able to
- Choose the suitable instrument like Ammeter, Voltmeter for AC/DC applications.
- Select suitable Bridge for measurement of electrical parameters and quantities.
- Use CRO for measurement of Amplitude, Phase and frequency of sinusoidal signals.

UNIT-I
Instruments: indicating, recording and integrating instruments, Ammeter, Voltmeter. Expression for torque of moving coil, moving iron, Dynamometer, induction and electrostatic instruments. Extension of range of instruments, Wattmeter Torque expression for dynamometer instruments, Reactive power measurement.

UNIT- II
Meters: Energy meters, single phase and 3-phase, Driving torque and braking torque equations, Errors and testing compensation, Maximum demand indicator, Power factor meters, Frequency meters, Electrical resonance and Weston type of synchroscope.

UNIT- III
Bridge Methods and transducers: Measurement of inductance, capacitance and resistance using Bridges, Maxwell’s, Hay’s bridge, Anderson, Wein, Desauty’s, Schering’s bridges, Kelvin’s double bridge, Megger, Loss of charge method, Wagners earthing device, Transducers - Analog and digital transducers, Strain gauges and Hall effect transducers.

UNIT-IV
Magnetic Measurements and instrument transformers: Ballistic galvanometer, Calibration by Hibbert’s magnetic standard flux meter, Lloyd-Fischer square for measuring iron loss, Determination of B-H curve and Hysteresis loop using CRO, Instrument transformers – Current and potential transformers, ratio and phase angle errors of CT’s and PT’s.

UNIT-V
Potentiometers: Crompton’s DC and AC polar and coordinate types, Applications, Measurements of impedance, Calibration and ammeter voltmeter and wattmeters. Use of oscilloscope in frequency, phase and amplitude measurements.
Suggested Reading:
4. U.A.Bakshi, A.V.Bakshi, Electrical and Electronic Instrumentation, Technical publications
Course Code	Course Title	Core / Elective
PC504EE | Linear Control Systems (Common to EEE and EIE) | Core

Prerequisite	Contact Hours per Week	CIE	SEE	Credits
Electric Circuits - II | L | T | D | P | 30 | 70 | 3

Course Objectives
- To develop basic skills of utilizing mathematical tools needed to analyze and design classical linear control systems.
- To understand and develop the state space representation of control systems.

Course Outcomes
At the end of the course students will be able to
- Understand the concept of the terms control systems, feedback, Mathematical modeling of Electrical and Mechanical systems.
- Explain the time domain and frequency response analysis of control systems.
- Acquire the knowledge of various analytical techniques used to determine the stability of control systems.
- Able to understand the importance of design of compensators
- Able to demonstrate controllability and observability of modern control systems.

UNIT-I
Introduction to Control Systems: Classification of control systems. Components of control systems, Feed-Back Characteristics, Effects of feedback - Mathematical modeling of Electrical and Mechanical systems, Transfer function, Transfer function of Potentiometer, synchro, AC servo motor, DC servo motor, Block diagram reduction technique, Signal flow graph, Mason's gain formula

UNIT-II
Time Domain Analysis: Standard test signals, Time response of first order systems, Transient response of second order system for unit step input, Time domain specifications, Steady state response, Steady state errors and error constants, Effects of P, PD, PI and PID controllers.

UNIT-III
Stability Analysis in S-Domain: The concept of stability, Routh's stability Criterion, Absolute stability and relative stability, limitations of Routh's stability.

Root Locus Technique: The root locus concept, construction of root loci, Effects of adding poles and zeros on the root loci.

UNIT-IV
Frequency Response Analysis: Introduction to frequency response, Frequency domain specifications, Bode plot, Stability analysis from Bode plots, Determination of transfer function from the Bode Diagram, Polar Plots, Nyquist Plots, Stability Analysis, Gain margin and phase margin

Control System Design: Introduction - Lag, Lead and Lag-Lead Compensator design in frequency Domain.

UNIT-V
State Space Analysis: Concepts of state, State variables and state model, Derivation of state models of linear time invariant systems - Controllable, Observable and Diagonal state models, State transition matrix, Solution of state equation, Concepts of Controllability and Observability.
Suggested Reading:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC50EE</td>
<td>DIGITAL SIGNAL PROCESSING AND APPLICATIONS (Common to EEE and EIE)</td>
<td>Core</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L 3</td>
<td>T 1</td>
<td>D 0</td>
<td>P 0</td>
</tr>
</tbody>
</table>

Course Objectives

- To be able to understand and apply classification: characterization, representation and analysis of signals and systems in time and frequency domain.
- To understand the principle and design of digital filters and to introduce digital signal processor and their architecture.

Course Outcomes

At the end of the course students will be able to

- Acquire the knowledge of - Classification of discrete time signals & discrete time systems, Properties of Z-transforms, Discrete time Fourier transform.
- Analyze the Characteristics of IIR digital filters, FIR digital filters.
- Explain the Advantages of Digital signal processors over conventional Microprocessors.

UNIT - I

Introduction to Digital Signal Processing: Sampling, Quantizing and coding, Classification of discrete time signals & discrete time systems, linear shift invariant systems, Stability and causality, Solution to Linear constant coefficient difference equations.

Z-transforms: Properties Inverse z – transform, System function, Relation between s-plane and z-plane. Stability in Z-domain, Solution of difference equations using one sided z-transform.

UNIT - II

Frequency domain analysis : Discrete time Fourier transform (DTFT), Properties, Frequency domain representation of discrete time signals and systems - DFS, Properties- Frequency domain sampling OFT, Properties - circular convolution - Linear convolution using OFT - Fast Fourier transforms (FFT), Radix-2 decimation in time(DIT) and decimation in frequency(DIF) FFT Algorithms, IDFT using FFT.

UNIT-III

IIR digital filters: Analog filter approximations, Butterworth and Chebyshev filters, Design of IIR Digital filters from analog filters using Bilinear transformation, Impulse invariant and step invariant methods. Realization of IIR filters - Direct form - I, Direct form - II, Cascade and parallel form realizations

UNIT - IV

FIR digital filters: Characteristics of FIR Digital Filters, frequency response. Design of FIR Digital filters using window techniques, Linear phase realization, Applications of digital signal processing to speech processing.

Multirate signal processing: Decimation, Interpolation, Sampling rate conversion, Implementation of sampling rate conversion.

UNIT-V

Introduction to Digital Signal Processors: Introduction to programmable DSPs -Advantages of Digital signal processors over conventional Microprocessors - Architecture of TMS 320C5X introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register, Index Register, Auxiliary Register Compare
Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, Program controller, Status registers, On-chip memory and On-chip peripherals

Suggested Reading:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE501EE</td>
<td>PROGRAMMABLE LOGIC CONTROLLERS</td>
<td>Core</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L T D P</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives
- To be able to understand basics of Programmable logic controllers, basic programming of PLC.
- To make the students to understand the Functions and applications of PLC.

Course Outcomes
At the end of the course students will be able to
- Develop PLC programs for industrial applications
- Acquire the knowledge of PLC counter functions and PLC Arithmetic functions and data handling functions.

UNIT-I
PLC Basics: Definition and History of PLC, PLC advantages and disadvantages, Over all PLC Systems, CPUs and Programmer Monitors, PLC input and output models, Printing PLC Information, Programming Procedures, Programming Equipment, Programming Formats, Proper Construction of PLC Diagrams, Devices to which PLC input and output modules are connected, Input on/off switching devices, Input analog devices, Output analog on/off devices and output analog devices.

UNIT-II
Basic PLC Programming: Programming on/off inputs to produce on/off outputs - PLC input instructions, Outputs Operational procedures, Contact and coil input/output programming examples, Relation of digital gate logic contact / coil logic - PLC programming and conversion examples, Creating ladder diagrams from process control descriptions, Sequence listings, Large process ladder diagram constructions.

UNIT-III
Basic PLC Functions: General Characteristics of Registers, Module addressing, holding registers, Input registers, output registers, PLC timer functions, examples of timer functions. Industrial applications, PLC counter functions.

UNIT-IV
Intermediate Functions: PLC Arithmetic functions, PLC additions and subtractions, The PLC repetitive clock, PLC Multiplications, Division and Square Root, PLC trigonometric and log functions, Other PLC arithmetic functions, PLC number comparison functions. PLC basic comparison functions and applications, Numbering systems and number conversion functions, PLC conversion between decimal and BCD-Hexadeclimals numbering systems.

UNIT-V
Data Handling Functions: The PLC skip and master control relay functions, Jump functions, Jump with non return, Jump with return. PLC data move Systems, The PLC functions and applications. PLC functions working with bits, PLC digital bit functions and applications, PLC sequence functions, PLC matrix functions.
Suggested Reading:
Course Code	Course Title	Core / Elective
PES02EE | ELECTRONIC INSTRUMENTATION (Professional Elective – I) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>L</td>
<td>T</td>
<td>D</td>
<td>P</td>
</tr>
</tbody>
</table>

Course Objectives
- To be able to understand various electrical transducers and instrumentation, amplifiers operation and their characteristics.
- To understand in detail about digital instruments and recorders, oscilloscopes, signal conditioning and data conversion

Course Outcomes
At the end of the course the student will be able to:
- Understand various electrical transducers and instrumentation
- Understand in detail about digital instruments and recorders

UNIT I
Transducers: Classification of transducers-Pressure sensitive detectors-Temperature detectors-Types of Electrical Transducers-Analogue and Digital transducers-Strain gauges-Thermocouple inductive transducer-Capacitive transducer-Piezo-electric transducers-Photo sensitive devices-Photo conductive cells-Photovoltaic cell-Selecting a transducer, Hall-effect transducers.

UNIT II
Instrumentation amplifiers: Basic characteristics of instrumentation amplifiers, Direct coupled amplifiers, Operational amplifiers, various function of operational amplifiers Difference amplifiers, Charge amplifiers, Logarithmic amplifier, Instrumentation amplifier with operational amplifier, three amplifier configuration.

UNIT III
Signal conditioning and Data conversion: Types of signal conditioning, Amplification of amplitude modulation in instrumentation, Modulators, Demodulators, Filters, Types of filters-Signal circuits-Bridge as input Circuit, Filters as integrator and differentiator (Analog to digital and Digital to analog conversion-Weighted resistance D/A converter-Analog to digital converters), Sample and hold circuit-Flash type, Dual scope integrating type-Successive approx. method.

UNIT IV

UNIT V
Suggested Reading:

Course Code	Course Title	Core / Elective
PE503EE | FACTS DEVICES (Professional Elective – I) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives
- To understand the concepts and Importance of different loads characteristics, Design of Sub-Transmission Lines, Sub-Stations and Feeders.
- To make the students understand about importance of Power Quality and Applications of capacitors in distribution systems.

Course Outcomes
At the end of the course the student will be able to:
- Apply impedance, phase angle and voltage control for real and reactive power flow in ac transmission systems
- Analyze and select a suitable FACTS controller for a given power flow condition

UNIT-I
Flexible AC Transmission Systems (FACTS): FACTS concepts and general system conditions: Power flow in AC systems, Relative importance of controllable parameters, Basic types of FACTS controllers, shunt and series controllers, Current source and Voltage source converters

UNIT-II
Static Shunt Compensators: Objectives of shunt compensation, Methods of controllable VAR generation, Static Var Compensator, its characteristics, TCR, TSC, FC-TCR configurations, STATCOM, basic operating principle, control approaches and characteristics.

UNIT-III
Static Series Compensators: Objectives of series compensator, variable impedance type of series compensators, TCSC, TSSC-operating principles and control schemes, SSSC, Power Angle characteristics, Control range and VAR rating, Capability to provide reactive power compensation, external control.

UNIT-IV
Combined Compensators: Introduction to Unified Power Flow Controller, Basic operating principles, Conventional control capabilities, Independent control of real and reactive power

UNIT-V
Application of FACTS: Improvement of system stability limit-enhancement of system damping-Enhancement of transient stability, Prevention of voltage instability

Suggested Reading
1. Understanding FACTS –Concepts and Technology of Flexible AC Transmission Systems\ Narain G.Honorani, Laszlo Gyugyi
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC901EG</td>
<td>GENDER SENSITIZATION</td>
<td>Core</td>
</tr>
</tbody>
</table>

Prerequisite

Contact Hours per Week

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Course Objectives

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Course Outcomes

At the end of the course students will be able to

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.

UNIT-I

Understanding Gender:

Why Should We Study It? Socialization: Making Women, Making Men: Introduction-Preparing for Womanhood-Growing up male-First lessons in caste-Different Masculinities;

UNIT-II

Gender And Biology:

Missing Women: Sex selection and Its Consequences – Declining sex ratio. Demographic Consequences; Gender Spectrum: Beyond the Binary – Two or many – Struggles with discrimination; Our Bodies, Our Health.

UNIT-III

Gender and Labour:

UNIT-IV

Issues of Violence:

UNIT – V

GENDER STUDIES:

Knowledge - Through the Lens of Gender - Point of view - Gender and the structure of knowledge – Unacknowledged women artists of Telangana: Whose History? Questions for Historians and Others: Reclaiming a past-Writing other histories-Missing pages from modern Telangana history.

Suggested Reading:

2. www.halftthesky.cgg.gov.in
Course Code | **Course Title** | **Core/Elective**
---|---|---
PC55EE | ELECTRICAL MACHINES LAB-I | Core

Prerequisite

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICAL MACHINES – I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Objectives:

- To learn operation and performance characteristics of dc machines by conducting various experiments and tests practically.
- To understand the operation and performance characteristics of transformers by conducting various experiments and tests.

Course Outcomes:

On successful completion of this course student will be able to

- Estimate the efficiency and voltage regulation of D.C. generator and transformers under various loading conditions.
- Acquire the knowledge of efficiency and speed regulation D.C. Motors under various loading conditions.

LIST OF EXPERIMENTS

1. Magnetization characteristics of a separately excited D.C. generator.
2. Determination of the load characteristics of shunt and compound generators.
3. Determination of the performance and mechanical characteristics of series, shunt and compound motors (Any one).
5. Speed control of D.C. Shunt motor using shunt field control and armature control methods.
7. Open circuit and short circuit and load test on a single phase transformer.
8. Sumpner’s test on two identical transformers.
10. Three phase to two phase transformation and open delta connection.
11. Hopkinson’s test.
12. Swinburne’s test.

Note: Minimum ten experiments should be conducted in the semester

Suggested Reading:

Course Code	Course Title	Core/Elective
PC552EE | POWER ELECTRONICS LAB (Common to EEE and EIE) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Electronics</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Objectives:
- To be able to understand various power switching devices, trigger circuits, characteristics and applications by conducting the experiments.
- To learn and understand the rectifiers, choppers and inverters principle operation, characteristics and applications.

Course Outcomes:
On successful completion of this course student will be able to
- Able to understand speed control of motors by using controlled rectifier
- Able to understand the applications of cycloconverters
- Able to simulate different power electronic devices using softwares.

LIST OF EXPERIMENTS:

2. Design and fabrication of trigger circuits for single phase half - controlled and fully controlled bridge rectifiers.
3. Study of SCR chopper.
4. Design and fabrication of trigger circuit for MOSFET chopper.
5. Study of forced commutation techniques of SCRs.
6. Speed control of separately excited DC motor by controlled rectifier.
7. Speed control of universal motors using choppers.
8. Study of single phase half and fully controlled rectifier.
9. Study of single phase and three phase AC voltage controller.
10. Study of single phase dual converter.
11. Study of single phase cyclo-converter.
12. IGBT based PWM inverters.
13. Simulation of single-phase half and fully controlled rectifier.
14. Simulation of single phase and three phase AC voltage controller.
15. Simulation of single phase inverter & three phase inverter.

Note: Minimum ten experiments should be conducted in the semester

Suggested Reading:
Course Code	Course Title	Core/Elective
PC553EE | CIRCUITS AND MEASUREMENT LAB (Common to EIE and EEE) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC – I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Objectives:
- To train the students for acquiring practical knowledge for measuring resistance, inductance and capacitance using various bridges.
- To train the student for the usage of A.C. and D.C. potentiometers.
- To make the student understand the operation of CRO and its usefulness in finding the amplitude, phase and frequency of waveforms.

Course Outcomes:
On successful completion of this course student will be able to
- Measure the inductance, capacitance and resistance using various bridges.
- Measure resistance and calibrate ammeter, voltmeters and wattmeters using A.C. and D.C. potentiometers.
- Have hands on experience on the operation of CRO

List of Experiments:

PART – A: CIRCUITS

1. Verification of KCL&KVL using Mesh and nodal analysis
2. Verification of (a) Thevenin’s Theorem (b) Norton Theorem (c) Super Position Theorem (d) Max power transfer theorem
3. Frequency and time response of of 2nd order RLC circuits
4. Open circuit, short and ABCD parameters of two port parameters
5. Simulation of 2nd order RLC using Pspice
6. Transient Response of RLC circuits

PART – B: MEASUREMENTS

7. Measurement of low resistance by Kelvin’s double bridge
8. Measurement of active, reactive power measurements using two wattmeter method
9. Calibration of Single phase energy meter by Phantom loading and measurement of power direct loading
10. Measurement of power by 3-voltmeter and 3-Ammeter methods
11. Measurement of a) Inductance by Maxwell’s and Andersons bridge b) Measurement of capacitance by DeSauty’s bridge
12. Use of DC Potentiometer for measurement of unknown voltage and impedance

Note: Minimum ten experiments should be conducted in the semester

Suggested Reading:
SCHEME OF INSTRUCTION & EXAMINATION

B.E. VI – Semester
ELECTRICAL AND ELECTRONICS ENGINEERING

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Duration in Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
<td>CIE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact Hrs/Wk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIE</td>
<td>SEE</td>
<td>Duration in Hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PC601EE</td>
<td>Electrical Machines-III</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>PC602EE</td>
<td>Microprocessors and Microcontrollers</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PC603EE</td>
<td>Switchgear and Protection</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PC604EE</td>
<td>Renewable Energy Technologies</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>PE-II</td>
<td>Professional Elective-II</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OE-I</td>
<td>Open Elective-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Practical / Laboratory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>PC651EE</td>
<td>Electrical Machines lab-II</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>PC652EE</td>
<td>Digital signal Processing Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>PC653EE</td>
<td>Control systems lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>MC</td>
<td>Mandatory Course</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>SI</td>
<td>Summer Internship*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
<td>2</td>
<td>9</td>
<td>29</td>
</tr>
</tbody>
</table>

PC: Professional Course
PE: Professional Elective
MC: Mandatory Course
OE: Open Elective
HS: Humanities and Social Sciences
SI: Summer Internship
L: Lectures
T: Tutorial
P: Practical
D: Drawing
CIE: Continuous Internal Evaluation
SEE: Semester End Examination (Univ. Exam)

Note -1:
1. Each contact hour is a Clock Hour
2. The duration of the practical class is two clock hours, however it can be extended wherever necessary, to enable the student to complete his experiment

Note-2:
* The students have to undergo a Summer Internship of four weeks duration after VI semester and credits will be awarded in VII semester after evaluation.
** ** Subject is not offered to the students of Electrical and Electronics Engineering and Electronics & Instrumentation Engineering Departments.
Open Elective-I:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OE601CE</td>
<td>Disaster Management</td>
</tr>
<tr>
<td>2</td>
<td>OE602CE</td>
<td>GeoSpatial Techniques</td>
</tr>
<tr>
<td>3</td>
<td>OE601CS</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>4</td>
<td>OE602CS</td>
<td>OOP using Java</td>
</tr>
<tr>
<td>5</td>
<td>OE601IT</td>
<td>Database Systems</td>
</tr>
<tr>
<td>6</td>
<td>OE601EC</td>
<td>Principles of Embedded Systems</td>
</tr>
<tr>
<td>7</td>
<td>OE602EC</td>
<td>Digital System Design using HDLVerilog</td>
</tr>
<tr>
<td>8</td>
<td>OE601EE</td>
<td>Reliability Engineering**</td>
</tr>
<tr>
<td>9</td>
<td>OE602EE</td>
<td>Basics of Power Electronics**</td>
</tr>
<tr>
<td>10</td>
<td>OE601ME</td>
<td>Industrial Robotics</td>
</tr>
<tr>
<td>11</td>
<td>OE602ME</td>
<td>Material Handling</td>
</tr>
<tr>
<td>12</td>
<td>OE632AE</td>
<td>Automotive Safety & Ergonomics</td>
</tr>
</tbody>
</table>

Professional Elective – II

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE601EE</td>
<td>AI Techniques</td>
</tr>
<tr>
<td>2</td>
<td>PE602EE</td>
<td>Electric Distribution System</td>
</tr>
<tr>
<td>3</td>
<td>PE603EE</td>
<td>Digital Control systems</td>
</tr>
</tbody>
</table>

Mandatory Course

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MC951SP</td>
<td>Yoga Practice</td>
</tr>
<tr>
<td>2</td>
<td>MC952SP</td>
<td>National Service Scheme</td>
</tr>
<tr>
<td>3</td>
<td>MC953SP</td>
<td>Sports</td>
</tr>
</tbody>
</table>
Faculty of Engineering, O.U

With effect from Academic Year 2018 - 2019

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC601EE</td>
<td>ELECTRICAL MACHINES-III</td>
<td>Core</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L T D P</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives
- To be able to understand in detail about synchronous machines. Construction, principle, performance characteristics and testing.
- To understand the construction, principle and performance characteristics of special machines.

Course Outcomes
At the end of the course students will be able to
- Acquire the knowledge of types, Constructional Details, characteristics and applications of synchronous generator, synchronous motor, PMSM and brushless DC motors.
- Explain different methods used to evaluate voltage regulation of synchronous generator.
- Analyze the behavior of an alternator under transient disturbances

UNIT - I
Synchronous machines: Types and Constructional Details - Types of Winding, Winding factors, E.M.F. equation, Fractional pitch and fractional slot windings, Suppression of harmonics and tooth ripple, Armature reaction and reactance, Synchronous impedance

UNIT - II

UNIT-III

UNIT- IV
Permanent Magnet Synchronous Motor: Construction, principle operation of PMSM and their operating characteristics

UNIT-V

Suggested Reading:
Course Code	Course Title	Core / Elective
PC602EE | MICROPROCESSOR AND MICROCONTROLLERS (Common to EEE and EIE) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>D</td>
<td>P</td>
</tr>
</tbody>
</table>

Course Objectives

- To be able to understand in detail about 8086 microprocessor architecture, programming and interfacing.
- To be able to understand about 8051 microcontroller architecture, and programming.

Course Outcomes

At the end of the course students will be able to

- Acquire the knowledge of Architecture of 8086, writing assembly language programming for different applications.
- Explain types of microcontrollers and their applications.

UNIT-I

Microprocessor: Architecture of 8086 - Segmented memory, Addressing modes, Instruction set, Minimum and maximum mode operations.

UNIT-II

Introduction to Programming: Assembly language programming, Assembler directives, Simple programs using assembler, Strings, Procedures, Macros timing.

UNIT-III

Interfacing to Microprocessor: Memory and I/O interfacing, A/D and D/A interfacing, 8255(PPI), Programmable Internal Timer (8253), Keyboard and display interlace, Interrupts of 8086.

UNIT- IV

Micro Controller Architecture: Types of Micro Controllers, 8051 MC - Architecture input / output pins, Ports and circuits, Internal and external memories, Counters and timers, Serial data input / output, Interrupts & timers.

UNIT-V

Introduction to Programming: Basic Assembly Language Programming, instruction cycle, Addressing modes, 8051 instruction set, Classification of instructions. Simple programs.

Suggested Reading:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC603EE</td>
<td>SWITCHGEAR AND PROTECTION</td>
<td>Core</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>L: 3 T: 0 D: 0 P: 0</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives
- To be able to understand the need of protection in power system and protection with conventional and static relays.
- To understand the protection of transformers, generators and need of circuit breakers.

Course Outcomes
At the end of the course students will be able to
- Acquire the knowledge of construction, working principles of different electromagnetic and static relays used to protect generators, transformers, transmission lines and distribution feeders.
- Analyze the Characteristics of over current, over voltage, distance and differential relays and also their applications in power system networks.
- Explain the working principle, Construction, rating and applications of different types of circuit breakers used in power system networks.
- Understand the construction details, advantages, disadvantages of Gas Insulation substations.

UNIT - I
Introduction to Protective Relays: Need for protection, primary protection, backup protection. Zones of protection, Definitions of relay pick up and reset values, Classification of relays, Operating principles and construction of Electromagnetic and Induction type relays. Over current relay, over voltage, Directional relay, Universal relay torque equation. Over current protection for radial feeder and ring mains, Protection of parallel lines, Relay settings for over current relays Earth fault and phase fault protection.

UNIT - II
Static phase and Amplitude comparators: Characteristics of dual input comparators. Static Relays, Instantaneous over current relay, definite time over current relay, Inverse time over current relay, Directional over current relay (Block diagram approach only) Distance protection, Characteristics of 2 – input distance relays on the RX diagram, Input characteristics for various types of distance relays, 3-step distance relays, Microprocessor based over current relay (block diagram).

UNIT - III
Transformer and Generator Protection: Differential relays, Percentage differential relays protection of generator and transformer using percentage differential relays, Split phase protection, Overheating, Loss of excitation, Protection of transformers against magnetizing inrush, Buchholz relay, Protection of earthing transformers.

UNIT - IV
Circuit Breakers: Need for circuit breakers, Parts of circuit breaker trip coil circuit, Arc properties, Principles of arc quenching, Theories, Recovery and restriking voltages, Rating of circuit breakers, Rated symmetrical and asymmetrical breaking current, Rated making current, Rated capacity, Voltage and frequency of circuit breakers, Auto re-closure, duty cycle, Current chopping, Resistance switching, Derivations of RR’RV, Maximum RRRV, Recovery voltage, Problems, Types of circuit breakers, Oil, Minimum oil, Air, Air blast, SF , Vacuum and miniature circuit breakers, Testing of circuit breakers.
UNIT-V
Gas Insulated Substations & Over Voltage Protection: Constructional details (components), Merits and Demerits of Gas Insulated Substations over conventional Air insulated Substations. Protection of transmission lines against direct lightning strokes, ground wires, Protection angle Protection zone, Tower footing resistance and its effects, Equipment protection assuming rod gaps, arcing horns, Different types of lightning arresters their construction Surge absorbers, Peterson coil, Insulation coordination. Estimation of over voltages / currents using Bewely Lattice diagram

Suggested Reading:
Course Code	Course Title	Core / Elective
PC604EE | RENEWABLE ENERGY TECHNOLOGIES | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>L</td>
<td>T</td>
<td>D</td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

Course Objectives
- To understand the concepts and Importance of renewable energy sources such as solar, wind, biomass, tidal power.
- To make the students understand the advantages and disadvantages of different renewable energy sources

Course Outcomes
At the end of the course students will be able to

- Explain the advantages, disadvantages and applications of different conventional and non conventional sources.
- Acquire the knowledge of various components, principle of operation and present scenario of different conventional and non conventional sources.

UNIT-I

UNIT-II

UNIT-III
Wind energy- Principles of wind energy conversion systems - Nature of wind - Power in the Wind-Basic components of WECS -Classification of WECS -Site selection considerations -Advantages and disadvantages of WECS -Wind energy collectors -Wind electric generating and control systems - Applications of Wind energy -Environmental aspects.

UNIT-IV

UNIT-V
Energy from Biomass - Biomass conversion technologies / processes - Photosynthesis - Photosynthetic efficiency - Biogas generation - Selection of site for Biogas plant - Classification of Biogas plants - Details
of commonly used Biogas plants in India - Advantages and disadvantages of Biogas generation - Thermal gasification of biomass - Biomass gasifiers.

Suggested Reading:

Faculty of Engineering, O.U

With effect from Academic Year 2018 - 2019

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE601EE</td>
<td>AI TECHNIQUES (Professional Elective-II)</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L T D P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>3 0 0 0</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives

➢ To be able to understand basics of ANN & Fuzzy based systems.
➢ To make the students to understand the ANN based systems for function approximation used in load forecasting.

Course Outcomes

At the end of the course students will be able to

➢ Understand how the soft computing techniques can be used for solving the problems of Electrical Engineering..
➢ Design of ANN based systems for function approximation used in load forecasting.
➢ Design of Fuzzy based systems for load frequency control in power systems
➢ Solve problem of Optimization in power systems.

UNIT-I:
Introduction: Introduction: definition of AI -difference between soft computing techniques and hard computing systems, expert systems brief history of ANN, Fuzzy and GA

UNIT-II:
Artificial Neural Networks: Introduction, Models of Neuron Network-Architectures, Knowledge representation, Artificial Intelligence and Neural networks–Learning process-Error correction learning, Hebbian learning, Competitive learning, Boltzman learning, supervised learning, unsupervised learning, Reinforcement learning, Learning tasks. Multi-layer perceptron using Back propagation Algorithm (BPA), Self – Organizing Map (SOM), Radial Basis Function Network-Functional Link Network (FLN), Hopfield Network

UNIT-III:

UNIT-IV:
Genetic Algorithms: Introduction-Encoding –Fitness Function-Reproduction operators, Genetic Modeling –Genetic operators-Cross over-Single site cross over, Two point cross over –Multi point cross over-Uniform cross over, Matrix cross over-Cross over Rate-Inversion & Deletion, Mutation operator –Mutation –Mutation Rate-Bit-wise operators, Generational cycle-convergence of Genetic Algorithm.

UNIT-V:
Applications of ANN: Fuzzy logic and GA in power systems operation and control for solving problems of load forecasting, voltage control, voltage stability, security assessment, feeder load balancing, AGC, Economic load dispatch, Unit commitment. Condition monitoring.
Suggested Reading:

1. Neural Networks, Fuzzy logic and Genetic algorithms By S. Rajasekaran, G. A. Vijayalakshmi Pai PHI publication,
2. Optimization for Engineering Design by Kalyanmoy Deb PHI publication
3. Multi-objective Optimization using Evolutionary Algorithms By Kalyanmoy Deb Willey Publication
4. Artificial intelligence techniques in power systems by KEVIN WARWICK, ARTHUR EKWUE RAJ AGRAWAL
Faculty of Engineering, O.U

With effect from Academic Year 2018 - 2019

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE602EE</td>
<td>ELECTRICAL DISTRIBUTION SYSTEM</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>(Professional Elective – II)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L T D P</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives

- To understand the concepts and Importance of different loads characteristics, Design of Sub-Transmission Lines, Sub-Station and Feeders.
- To make the students understand about importance of Power Quality and Applications of capacitors in distribution systems.

Course Outcomes

At the end of the course students will be able to
- Understand the concept of different factors used in design of distribution system components.
- Explain the different types of secondary distribution systems and their performances.
- Acquire the knowledge of various components, functions and applications of distribution automation and SCADA.
- Able to design the optimal locations and ratings of shunt capacitors used in radial feeder for different loading conditions.

UNIT-I
Introduction, Load characteristics Diversified demand Non-coincidence demand Coincidence factor, contribution factor Problems. Rate structure, customer billing, types of distribution transformers.

UNIT-II
Design of Sub-transmission lines and distribution sub-stations Substation bus schemes, rating of distribution substation, service area with multiple feeders, percent voltage drop Calculations.

UNIT-III
Design considerations of primary systems, radial type, loop type primary feeder, primary feeder loading, uniformly distributed load application to a long line. Design considerations of secondary systems. Secondary banking Secondary networks Network transformers, unbalanced loads and voltages.

UNIT-IV
Voltage drop and power loss calculations, 3-phase, non 3-phase primary lines - Single phase two wire laterals with ungrounded neutral, single phase two wire ungrounded laterals. Voltage fluctuations, measures to reduce flickering.

UNIT-V
Application of capacitors to distribution systems Effect of series and shunt capacitors, power factor correction, economic justification for capacitors. Best capacitor location-Algorithm.

Distribution Automation: Definitions, Components of distribution SCADA.

Suggested Reading
Course Code	Course Title	Core / Elective
PE603EE | DIGITAL CONTROL SYSTEMS (Professional Elective-II) | Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIL</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

Course Objectives
- This course gives fundamentals digital control systems, z-transforms, state space representation of the control systems, concepts of controllability and observability, estimation of stability in different domains, design of discrete time control systems, compensators, state feedback controllers, state observers through various transformations.

Course Outcomes
The students will be able to:
- Develop PLC programs for industrial applications.
- Acquire the knowledge of PLC counter functions and PLC Arithmetic functions and data handling functions.

UNIT-I
Introduction: Introduction, Examples of Data control systems, Digital to Analog conversion and Analog to Digital conversion, sample and hold operations. Z - TRANSFORMS: Introduction, Linear difference equations, pulse response, Z - transforms, Theorems of Z - Transforms, the inverse Z - transforms, Modified Z - Transforms. Z-Transform method for solving difference equations; Pulse transforms function) block diagram analysis of sampled, data systems, mapping between s-plane and z-plane.

UNIT-II
State Space Analysis: State Space Representation of discrete time systems, Pulse Transfer Function Matrix solving discrete time state space equations, State transition matrix and its Properties, Methods for Computation of State Transition Matrix, Discretization of continuous time state - space equations. Concepts of Controllability and Observability, Tests for controllability and Observability, Duality between Controllability and Observability, Controllability and Observability conditions for Pulse Transfer Function.

UNIT-III
Stability Analysis: Mapping between the S-Plane and the Z-Plane, Primary strips and Complementary Strips, Constant frequency loci, Constant damping ratio loci, Stability Analysis of closed loop systems in the Z-Plane. Jury stability test, Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion

UNIT-IV
Design of Discrete Time Control System: Transient and steady, State response Analysis, Design based on the frequency response method, Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead-Lag compensators and digital PID controllers.

UNIT-V
State Feedback Controllers & Observers: Design of state feedback controller through pole placement, Necessary and sufficient conditions, Ackerman’s formula. State Observers, Full order and Reduced order observers.
Suggested Reading:

 Variable Methods by M. Gopal, TMH.
4. Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli, AP Academic
 Press.
Course Code	Course Title	Core/Elective
PC651EE | ELECTRICAL MACHINES LAB-II | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Objectives:
- To learn operation and performance characteristics of induction machines by conducting various experiments and tests practically.
- To understand the operation and performance characteristics of synchronous machines by conducting various experiments and tests.

Course Outcomes:
On successful completion of this course student will be able to
- Able to understand Performance characteristics of single phase induction motor
- Able to understand the importance of Voltage regulation of an alternator
- Able to explain different methods used to measure the voltage regulation of an alternator

LIST OF EXPERIMENTS:

1. No-load test, blocked rotor test and load test on 3-phase induction motor.
2. Speed control of 3-phase induction motor by (any three methods) (a) Cascade connection (b) Rotor resistance control (C) Pole changing (d) Slip power recovery scheme.
4. Voltage regulation of an alternator by (a) Synchronous impedance method (b) Ampere-turn method (c) Z.P.F. method.
5. Regulation of alternator by slip test.
7. Power angle characteristics of a synchronous machine.
10. Retardation test / Dynamic braking of DC shunt motor
11. Speed control of BLDC motor.
12. Load characteristics of induction generator.
13. Speed control of SRM motor.

Note: Atleast ten experiments should be conducted in the Semester.

Suggested Reading:
Course Code	Course Title	Core/Elective
PC652EE | **DIGITAL SIGNAL PROCESSING LAB** (Common to EEE and EIE) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Objectives:
- To prepare the students
- To develop MATLAB code to generate different discrete signals and perform basic operations.
- To develop MATLAB code to convert continuous to discrete by DFT and FFT computations. to obtain Convolution of sequences and sampling theorem.
- To develop MATLAB code to design FIR and IIR filters.
- To use DSP kit and CCS, write code to obtain convolution of sequences, design of FIR and IIR filters, compute DFT and FFT algorithms, Impulse response and generate basic waves

Course Outcomes:
On successful completion of this course student will be able to
- Compute and write MATLAB code to generate basic waves and perform basic operations on them.
- Compute and write MATLAB code to apply sampling theorem, to obtain convolution and compute DFT and FFT.
- Compute and write MATLAB code to design FIR and IIR filters.
- Compute and write MATLAB code to obtain convolution of sequences, Design of FIR and IIR filters, compute DFT and FFT algorithms, Impulse response and generate basic waves using DSP kit

List of Experiments
1. Generation of different discrete signal sequences and Waveforms.
2. Basic Operations On Discrete Time Signals
3. DFT Computation and FFT Algorithms.
4. Verification of Convolution Theorem.
5. Verification of sampling theorem.
8. To perform linear and circular convolution for the given sequences.
9. Design and implementation of FIR and IIR filter.
11. Generation of basic waves.
12. Impulse response.

Note: Atleast ten experiments should be conducted in the Semester
Course Code	Course Title	Core/Elective
PC653EE | CONTROL SYSTEMS LAB (Common to EEE and EIE) | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Objectives:
- To prepare the students
- To develop transfer function of various control system plants practically by conducting the experiments.
- To understand the various controllers, basic features of PLC
- Programming and control system concepts using MATLAB.

Course Outcomes:
On successful completion of this course student will be able to
- Able to understand Performance of P, PI and PID Controllers
- Able to develop PLC programs for certain applications
- Acquire the knowledge of Data acquisition system and Industrial process control

LIST OF EXPERIMENTS
2. Characteristics of synchros.
3. Frequency response of second order system.
4. Operating characteristics of Stepper motor.
5. Step response of second order system.
7. A.C. Position control system.
9. Design of lag and lead compensation.
10. ON - OFF temperature control systems.
11. Simulation of control system concepts using MATLAB.
12. PLC (Programmable Logic Controller) applications. (a) Bottle filling (b) Speed control of Stepper motor (c) Liquid level control.
13. Data acquisition system and applications.

Note: Atleast ten experiments should be conducted in the Semester.

Suggested Reading:
Faculty of Engineering, O.U
With effect from Academic Year 2018 - 2019

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE 601 CE</td>
<td>DISASTER MANAGEMENT</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>D</td>
<td>P</td>
</tr>
</tbody>
</table>

Course Objectives
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction.
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR).
- To enhance awareness of institutional processes in the country.
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity.

Course Outcomes
- The students will be able to understand impact on Natural and manmade disasters.
- Able to classify disasters and destructions due to cyclones.
- Able to understand disaster management applied in India.

UNIT-I

Introduction to Disasters: Concepts and definitions of Disaster, Hazard, Vulnerability, Resilience, Risks. Natural and Manmade disasters, impact of drought, review of past disasters and drought in India, its classification and characteristics. Classification of drought, causes, Impacts (including social, economic, political, environmental, health, psychosocial, etc.).

UNIT-II

Disaster: Classifications, Causes, Impacts including social, economic, political, environmental, health, psychosocial etc. Differential Impacts, in terms of caste, class, gender, age, location, disability Global trends in disasters, urban disasters, pandemics, complex emergencies, climate change. Cyclones and Floods: Tropical cyclones & Local storms, Destruction by tropical cyclones and local storms, Cumulative atmospheric hazards/ disasters, Cold waves, Heat waves, Causes of floods, Rood hazards in India.

UNIT-III

Approaches to Disaster Risk Reduction: Disaster cycle, its analysis, Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural sources, roles and responsibilities of community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), states, Centre, and other stake-holders.

UNIT-IV

Inter-relationship between Disasters and Development: Factors affecting Vulnerabilities, differential impacts, impact of development projects such as dams, embankments, changes in Land-use etc. Climate Change, Adaptation, Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT-V

Disaster Risk Management in India: Hazard and Vulnerability profile of India
Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management Institutional arrangements (Mitigation, Response and Preparedness, OM Act and Policy, other related policies, plans, programmes and legislation)

Field Work and Case Studies: The field work is meant for students to understand vulnerabilities and to work on reducing disaster risks and to build a culture of safety. Projects must be conceived creatively based on the geographic location and hazard profile of the region where the college is located.

Suggested readings:

Course Code	Course Title	Core / Elective
OE 602 CE | GEO-SPATIAL TECHNIQUES | Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L T D P</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives
- Description about various spatial and non-spatial data types, and data base management techniques
- Development of the concepts and professional skills in utility of geospatial techniques
- Enhancement of knowledge of geospatial techniques to field problems

Course Outcomes
- The students will be able to understand and apply GIS tools
- Will be able to analyse and process data to apply to the GIS tools.
- Will be able assimilate knowledge on field problems using remote sensing

UNIT I

Introduction: Basic concepts, socioeconomic challenges, fundamentals of geographical information systems (GIS), history of geographical information system, components of geographical information systems. Projections and Coordinate Systems: Map definitions, representations of point, line, polygon, common coordinate system, geographic coordinate system, map projections, transformations map analysis.

UNIT II

Data Acquisition and Data Management: data types, spatial, non-spatial (attribute) data, data structure and database management, data format, vector and raster data representation, object structural model filters and files data in computer, key board entry, manual digitizing, scanner, aerial photographic data, remotely sensed data, digital data, cartographic database, digital elevation data, data compression, data storage and maintenance, data quality and standards, precision, accuracy, error and data uncertainty. Data Processing: Geometric errors and corrections, types of systematic and non-systematic errors, radiometric errors and corrections, internal and external errors.

UNIT III

Data Modeling: Spatial data analysis, data retrieval query, simple analysis, recode overlay, vector data model, raster data model, digital elevation model, cost and path analysis, knowledge based system. GIS Analysis and Functions: Organizing data for analysis, analysis function, maintenance and analysis of spatial data, buffer analysis, overlay analysis, transformations, conflation, edge matching and editing, maintenance and analysis of spatial and non-spatial data

UNIT IV

Applications of GIS: Environmental and natural resource management, soil and water resources, agriculture, land use planning, geology and municipal applications, urban planning and project management, GIS for decision making under uncertainty, software scenario functions, standard GIS packages, introduction to Global Positioning Systems (GPS) and its applications.
UNIT V
Introduction to Remote Sensing: General background of remote sensing technology, objectives and limitations of remote sensing, electro-magnetic radiation, characteristics, interaction with earth surface and atmosphere, remote sensing platforms and sensors, satellite characteristics, digital image processing, IRS series and high resolution satellites, software scenario functions, remote sensing applications to watershed modeling, environmental modeling, urban planning and management.

Suggested Readings:

Course Code: OE 601 CS
Course Title: OPERATING SYSTEMS
Core / Elective: Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>D</td>
<td>P</td>
</tr>
</tbody>
</table>

Course Objectives
- To understand CPU, Memory, File and Device management
- To learn about concurrency control, protection and security
- To gain knowledge of Linux and Windows NT internals

Course Outcomes
- Explain the components and functions of operating systems.
- Analyze various Scheduling algorithms.
- Apply the principles of concurrency
- Compare and contrast various memory management schemes
- Perform administrative tasks on Linux Windows Systems

UNIT-I
Introduction to Operating Systems: OS structure and strategies, Process concepts, Threads, Inter process communication. CPU scheduling algorithms, Process synchronization, Critical section problem, Semaphores, Monitors.

UNIT-II

UNIT-III

UNIT-V
Case Studies: The Linux System, Design principles, Kernel modules, Process management, Scheduling, Memory management, File systems, Input and Output, Inter process communication Windows NT, General Architecture, The NT kernel, The NT executive

Suggested readings:

Faculty of Engineering, O.U
With effect from Academic Year 2018 - 2019

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE 602 CS</td>
<td>OOPS USING JAVA</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Prerequisite	Contact Hours per Week	Credits					
	L	T	D	P	CIE	SEE	
	3	0	0	0	30	70	3

Course Objectives
- To introduce fundamental object oriented concepts of Java programming Language, such as classes, inheritance packages and interfaces.
- To introduce concepts of exception handling and multi-threading.
- To use various classes and interfaces in java collection framework and utility classes.
- To understand the concepts of GUI programming using AWT controls.
- To introduce Java I/O streams and serialization

Course Outcomes
- Able to develop java applications using OO concepts and packages.
- Able to write multi-threaded programs with synchronization
- Able to implement real world applications using java collection framework and I/O classes
- Able to write Event driven GUI programs using AWT/Swing

UNIT – I
Object Oriented System Development: understanding object oriented development, understanding object oriented concepts, benefits of object oriented development.
Java Programming Fundamentals: Introduction, overview of Java, data types, variables and arrays, operators, control statements

UNIT – II
Java Programming Object Oriented Concepts: classes, methods, inheritance, packages and interfaces. Exceptional Handling, Multithreaded Programming

UNIT – III
I/O Basics, Reading Console Input and Output, Reading and Writing Files, Print Writer Class, String Handling Exploring Java. Lang, Collections Overview, Collection Interfaces, Collection Classes, Iterators, Random Access Interface, Maps, Comparators, Arrays, Legacy Classes and Interfaces, String Tokenizer

UNIT – IV

UNIT – V
Java I/O Classes and Interfaces: Files, Stream and Byte Classes, Character Streams, Serialization.
Suggested Readings:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core/Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE601IT</td>
<td>DATABASE SYSTEMS</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact hours per week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

Course Objectives:
- To introduce E-R Model and Normalization
- To learn formal and commercial query languages of RDBMS
- To understand the process of database application development
- To study different database architectures
- To introduce security issues in databases

Course Outcomes:
Student will be able to:
- Understand the mathematical foundations of Database design
- Model a set of requirements using the Entity Relationship (E-R) Model, transform an E-R model into a relational model, and refine the relational model using theory of Normalization
- Understand the process of developing database application using SQL
- Understand the security mechanisms in RDBMS

UNIT I
Design: Conceptual design (E-R modeling), the relational model, normalization

UNIT II
Queries: algebra and logic (relational algebra and calculus), relational query languages and queries (namely SQL), select, project, join, union, intersection, except, recursion, aggregation, data manipulation

UNIT III
Applications: application development, database application interfaces (e.g., JDBC), internet applications, proper database application paradigms, transactions, transaction management, concurrency control, crash recovery

UNIT IV
Distributed DB, Architecture, Query processing and Optimization in Distributed DB, Introduction to NoSQL Databases, Graph databases, Columnar Databases

UNIT V
Introduction to Database Security Issues, Security mechanism, Database Users and Schemas, Privileges
Suggested Books

OE 601 EC PRINCIPLES OF EMBEDDED SYSTEMS Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>L: 3 T: 0 D: 0 P: 0</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives

- To understand the fundamentals of embedded systems
- To study the block diagram and advanced hardware fundamentals
- To study the software architecture of embedded systems
- To learn the tool chain of embedded systems
- To understand the tools and debugging process of embedded systems.

Course Outcomes

Student will be able:

- To acquire an overview of what an embedded system implies
- To understand the architecture of a microprocessor and microcontroller to enable to design embedded applications using them.
- To apply theoretical learning to practical real time problems for automation.
- To understand how to build and debug an embedded system application.
- To analyze and design real world applications and interface peripheral devices to the microprocessor.

UNIT – I

Fundamentals of Embedded Systems: Definition of Embedded system, Examples of Embedded Systems, Typical Hardware, Terminology, Gates, A few other basic considerations, Timing Diagrams, Memory

UNIT – II

Advanced Hardware Fundamentals: Microprocessors, Buses, Direct Memory Access, Interrupts, Other Common Parts, Built-Ins on the Microprocessor, Conventions used in Schematics, Microprocessor Architecture, Interrupts Basics, Shared Data Problem, Interrupt Latency.

UNIT – III

UNIT – IV

Embedded Software Development Tools: Host and Target Machines, Cross compilers, Cross Assemblers and Tool Chains, Linkers /Locaters for Embedded Software, Getting Embedded Software into Target System: PROM programmers, ROM Emulators, In-Circuit Emulators.

UNIT – V

Debugging Techniques: Testing on your host machine, Instruction Set Simulators, The assert Macro, Using Laboratory Tools
Suggested Readings:
Course Code	Course Title	Core / Elective
OE 602 EC | DIGITAL SYSTEM DESIGN USING VERILOG HDL | Elective

Prerequisite	Contact Hours per Week	CIE	SEE	Credits
3 | 0 | 0 | 0 | 30 | 70 | 3

Course Objectives
- Describe Verilog hardware description languages (HDL).
- Develop Verilog HDL code for combinational digital circuits.
- Develop Verilog HDL code for sequential digital circuits.
- Develop Verilog HDL code for digital circuits using switch level modeling and describes system tasks, functions and compiler directives
- Describes designing with FPGA and CPLD.

Course Outcomes
After completion of this course, students should be able:
- To understand syntax of various commands, data types and operators available with verilog HDL
- To design and simulate combinational circuits in verilog
- To design and simulate sequential and concurrent techniques in verilog
- To write Switch level models of digital circuits
- To implement models on FPGAs and CPLDs

UNIT I
Introduction to Verilog HDL: Levels of Design Description, Concurrency, Simulation and Synthesis, Function Verification, System Tasks, Programming Language Interface, Module, Simulation and Synthesis Tools

Verilog Data Types and Operators: Binary data manipulation, Combinational and Sequential logic design, Structural Models of Combinational Logic, Logic Simulation, Design Verification and Test Methodology, Propagation Delay, Truth Table models using Verilog.

UNIT II
Combinational Logic Circuit Design using Verilog: Combinational circuits building blocks: Multiplexers, Decoders, Encoders, Code converters, Arithmetic comparison circuits, Verilog for combinational circuits, Adders-Half Adder, Full Adder, Ripple-Carry Adder, Carry Lookahead Adder, Subtraction, Multiplication.

UNIT III
Sequential Logic Circuit Design using Verilog: Flip-flops, registers & counters, synchronous sequential circuits: Basic design steps, Mealy State model, Design of FSM using CAD tools, Serial Adder Example, State Minimization, Design of Counter using sequential Circuit approach.

UNIT IV
Switch Level Modeling: Basic Transistor Switches, CMOS Switches, Bidirectional Gates, Time Delays with Switch Primitives, Instantiation with Strengths and Delays, Strength Contention with Trireg Nets.

System Tasks Functions and Compiler Directives: Parameters, Path Delays, Module Parameters, System Tasks and Functions, File Based Tasks and Functions, Computer Directives, Hierarchical Access, User Defined Primitives.
UNIT V
Designing with FPGAs and CPLDs: Simple PLDs, Complex PLDs, Xilinx 3000 Series FPGAs, Designing with FPGAs, Using a One-Hot State Assignment, Altera Complex Programmable Logic Devices (CPLDs), Altera FLEX 10K Series CPLDs.

Suggested Readings:
Course Code	Course Title	Core / Elective
OE 601 EE | RELIABILITY ENGINEERING | Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives
- To understand the concepts of different types of probability distributions importance of
 reliability evaluation of networks.
- To make the students understand about Reliability, availability model of Power Systems
 and markov modeling of Power Plants. With identical and no identical units.

Course Outcomes
- Able to understand the meaning of discrete and continuous random variables and their
 significance, causes of failures of a system.
- Able to acquire the knowledge of different distribution functions and their applications.
- Able to develop reliability block diagrams and evaluation of reliability of different
 systems.

UNIT- I
Discrete and Continuous Random Variables: probability density function and cumulative
distribution function, Mean and Variance, Binomial, Poisson, Exponential and Weibull
 distributions.

UNIT, II
Failure and Causes of Failure: Failure rate and failure density, Reliability function and MTTF,
Bath tub curve for different systems, parametric methods for above distributions, Non- Parametric
methods from field data.

UNIT- III
Reliability Block Diagram: Series and parallel systems, Network reduction technique,
Examples, Evaluation of failure rate, MTTF and reliability, Active and Standby Redundancy, r
out of n configuration. Non-series, parallel systems. Path based and cut set methods.

UNIT- IV
Availability, MTTR and MTBF: Markov models and State transition matrices, Reliability
models for single component, two components, Load sharing and standby systems, Reliability and
availability models of two unit parallel system with repair and standby systems with repair.

UNIT- V
Repairable Systems: Maintainability, Preventive maintenance, Evaluation of reliability and
J1TTF, Overhauling and replacement, Optimum maintenance policy, Markov model of a power
plant with identical units and non-identical unit, Capacity outage probability table. Frequency of
failures and Cumulative frequency
Suggested Readings:

Course Code	Course Title	Core / Elective
OE602EE | BASICS OF POWER ELECTRONICS | Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>D</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives

- To be able to understand various power switching devices, characteristics and applications.
- To learn and understand the various converters like rectifiers, choppers and inverters principle operation, characteristics and applications.

UNIT I: Power Switching Devices

Concept of power electronics, scope and applications, types of power converters; Power semiconductor switches and their V-I characteristics - Power Diodes, Power BJT, SCR, Power MOSFET, Power IGBT; Thyristor ratings and protection, methods of SCR commutation, UJT as a trigger source, gate drive circuits for BJT and MOSFETs

UNIT II: AC-DC Converters (Phase Controlled Rectifiers)

UNIT III: DC-DC Converters (Chopper/SMPS)

Introduction, elementary chopper with an active switch and diode, concepts of duty ratio, average inductor voltage, average capacitor current. Buck converter - Power circuit, analysis and waveforms at steady state, duty ratio control of output voltage. Boost converter - Power circuit, analysis and waveforms at steady state, relation between duty ratio and average output voltage. Buck-Boost converter - Power circuit, analysis and waveforms at steady state, relation between duty ratio and average output voltage

UNIT IV: DC-AC Converters (Inverters)

Introduction, principle of operation, performance parameters, single phase bridge inverters with R, RL loads, 3-phase bridge inverters - 120 and 180 degrees mode of operation, Voltage control of single phase inverters - single pulse width modulation, multiple pulse width modulation, sinusoidal pulse width modulation.

UNIT V: AC-AC Converters

Phase Controller (AC Voltage Regulator)-Introduction, principle of operation of single phase voltage controllers for R, R-L loads and its applications. Cycloconverter-Principle of operation of single phase cycloconverters, relevant waveforms, circulating current mode of operation, Advantages and disadvantages
Faculty of Engineering, O.U

With effect from Academic Year 2018 - 2019

Suggested Readings:
Course Code	Course Title	Core / Elective
OE 601 ME | INDUSTRIAL ROBOTICS | Elective

Prerequisite Contact Hours per Week

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives

- To familiarize the student with the anatomy of robot and their applications.
- To provide knowledge about various kinds of end effectors usage.
- To equip the students with information about various sensors used in industrial robots.
- To make the student understand the importance of spatial transformation of robots using forward and inverse kinematics.
- To specify and provide the knowledge of techniques involved in robot vision in industry.
- To equip students with latest robot languages implemented in industrial manipulators.

Course Outcomes

- Able to demonstrate knowledge of the relationship between mechanical structures of industrial robots and their operational workspace characteristics and have an understanding of the functionality and limitations of robot actuators and sensors.
- Able to demonstrate an ability to apply spatial transformation to obtain forward/Inverse kinematics equation of robot manipulators using analytical/numerical/simulation tools.
- Able to apply knowledge and choose the best & economically suitable sensors/end effectors required for specific applications.
- Able to understand the importance of robot vision and apply the learnt techniques to get the required information from input images.
- Able to design and develop a industrial robot for a given purpose economically.
- Appreciate the current state and potential for robotics in new application areas.

UNIT – I

Introduction to Robotics: Basic structure of Robots. Degree of freedom of Robots, Work envelope, Classification of Robots based on Drive Technology, Work-Envelope and motion control methods. Application of Robots in Industry, Repeatability, Precision and Accuracy as applied to Robots, Specifications of robots used for various applications. End effectors, Grippers: Mechanical grippers, pneumatic and hydraulic grippers, magnetic grippers, vacuum grippers, RCC grippers, Two fingered and three fingered grippers, internal grippers and external grippers, Selection and design considerations.

UNIT – II

Requirements of a Sensor: Principles and Applications of the following types of sensors- Position of sensors (Piezo electric sensor, LVDT, Resolvers, Optical encoders, Pneumatic position sensors), Range sensors (Triangulation principle, Structured, Lighting approach, Time of flight range finders, Laser range meters), Proximity sensors (Inductive, Hall effect, Capacitive, Ultrasonic and Optical proximity sensors), Touch sensors (Binary sensors, Analog sensors), Wrist Sensors, Compliance Sensors, Slip Sensors.
UNIT – III
Kinematic Analysis of Robots: Rotation matrix. Homogeneous transformation matrix, Denavit & Hartenberg representation, Euler and RPY angles representation. Representation of absolute position and orientation in terms of joint parameters, Direct Kinematics of manipulators, Inverse kinematics of Robot arm for position and orientation. Redundancy in Robots, Static force analysis

UNIT – IV
Introduction to Techniques used in Robot Vision: Image acquisition, illumination techniques, imaging geometry, basic relationship pixels, preprocessing, segmentation & description of 3-dimensional structures, their recognition and interpretation. Types of Camera, frame grabbing, sensing and digitizing image data, Signal conversion, Image Storage, Lighting techniques, Image processing and analysis, Data reduction, Segmentation, Feature extraction, Object recognition, and various algorithms, Applications, Inspection, identification, visual serving and navigation.

UNIT – V
Robot Programming Languages: Characteristics of robot level languages, task level languages. Teach pendant programming, Lead through programming, Robot programming languages, VAL programming, Motion commands, Sensor commands. End effector commands, Simple programs. RGV, AGV. Implementation of robots in industries, various steps, Safety considerations for robot operations. Economic analysis of robots, Pay back method, EUAC method and Rate of return method

Suggested Readings:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE 602 ME</td>
<td>MATERIAL HANDLING</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L T D P</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives
- To know about the working principle of various material handling equipments.
- To understand the Material handling relates to the loading, unloading and movement of all types of materials.
- To understand the estimation of storage space and maintenance of material handling equipments.

Course Outcomes
- Able to understand various conveying systems that available in industry.
- Able to understand various bulk solids handling systems and their design features.
- Able to understand and various modern material handling systems and their integration.
- Able to calculate number of MH systems required, storage space, cost and maintenance.

UNIT – I
Mechanical Handling Systems: Belt Conveyors and Desing, Bucket Elevators, Package conveyors, Chain and Flight Conveyors, Screw Conveyors, Vibratory Conveyors, Cranes and Hoists.

UNIT – II
Pneumatic and Hydraulic Conveying Systems: Modes of Conveying and High pressure conveying systems, Low Velocity Conveying System. Components of Pneumatic Conveying Systems: General Requirements, Fans and Blowers, Boots-Type Blowers, Sliding-Vane Rotary Compressors, Screw Compressors, Reciprocating Compressors, Vacuum Pumps.

UNIT – III

Unit IV
Modern Material Handling Systems: Constructional features of (i) AGV (ii) automated storage and retrieval systems. Sensors used in AGVs and ASRS.Bar code systems and RFID systems: Fundamentals and their integration with computer-based information systems.

UNIT – V
Total MH Throughput: Calculation for no. of MH systems; storage space estimation based on number of aisles. Maintenance of MH equipment, spare parts management, cost of materials handling, cost per unit load computations.
Suggested Readings:

Course Code: OE 632 AE

Course Title: AUTOMOTIVE SAFETY AND ERGONOMICS

Core / Elective: Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact Hours per Week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3 0 0 0</td>
<td>30</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
- Understand the basics of vehicle collision and its effects
- Understand the various safety concepts used in passenger cars.
- Gain knowledge about various safety equipment.
- Understand the concepts of vehicle ergonomics.
- Gain knowledge about various automotive comfort features.

Course Outcomes:
- Break down the importance of safety in Automobiles
- Describe the various safety equipment used in Automobiles
- Explain about Vehicle ergonomics and Comforts in Automobiles

UNIT-I

Introduction: Design of the Body for safety, Energy equations, Engine location, Effects of Deceleration inside passenger compartment, Deceleration on impact with stationary and movable obstacle, Concept of Crumble zone and Safety sandwich construction, Active and passive safety, Characteristics of vehicle structures, Optimization of vehicle structures for crash worthiness, Types of crash / roll over tests, Regulatory requirements for crash testing, instrumentation, High speed photography, image analysis.

UNIT-II

Safety Concepts: Active safety- driving safety, Conditional safety, Perceptibility safety and Operating safety, Passive safety: Exterior safety, Interior safety, Deformation behaviour of vehicle body, Speed and acceleration characteristics of passenger compartment on impact, pedestrian safety, human impact tolerance, determination of injury thresholds, severity index, study of comparative tolerance, Study of crash dummies.

UNIT-III

Safety equipments: Seat belt, automatic seat belt fastening system, Collapsible steering column, tilt-able steering wheel, Air bags, electronic systems for activating air bags, Frontal design for safety, collision warning system, Causes of rear end collision, frontal object detection, rear vehicle object detection system, Object detection system with braking system interactions. Anti-lock braking system ESP and EBD systems

UNIT-IV

Vehicle Ergonomics: Introduction to human body - anthropometrics and its application to vehicle ergonomics, Cockpit design, Driver comfort - seating, visibility, Man-machine system- psychological factors – stress, attention, Passenger comfort - ingress and egress, spaciousness,
Ventilation, temperature control, Dust and fume prevention and vibration, Interior features and conveniences, Use of modern technology for the same

UNIT-V
Comfort and Convenience System: Cabin comfort - in-car air conditioning – overall energy efficiency, Air management, central and Unitary systems, air flow circuits, air cleaning, ventilation, air space diffusion, Compact heat exchanger design, controls and instrumentation, Steering and mirror adjustment, central locking system, Garage door opening system, tire pressure control system, rain sensor system, environment information system, Automotive lamps, types, design, construction, performance, Light signalling devices- stop lamp, Rear position lamp, Direction indicator, Reverse lamp, reflex reflector, position lamp, gas discharge lamp, LED, Adoptive front lighting system (AFLS) and Daylight running lamps (DRL).

Suggested Readings:

1. Prasad, Priya and BelwafaJamel, "Vehicles Crashworthiness and Occupant Protection”, American Iron and Steel Institute, USA.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Core/Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC 951 SP</td>
<td>YOGA PRACTICE</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Prerequisite: Contact Hours per Week

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Course Objectives:
- Enhances body flexibility
- Achieves mental balance
- Elevates Mind and Body co-ordination
- Precise time management
- Improves positive thinking at the expense of negative thinking

Course Outcomes:
Student will be able to:
- Students will become more focused towards becoming excellent citizens with more and more discipline in their day-to-day life.
- An all-round development-physical, mental and spiritual health-takes place.
- Self-discipline and discipline with respect society enormously increases.
- University environment becomes more peaceful and harmonious.

UNIT-I

Introduction: Yoga definition – Health definition from WHO-Yoga versus Health-Basis of Yoga-yoga is beyond science-Zist of 18 chapters of Bhagavadgita- 4 types of yoga: Karma, Bhakti, Gnyana and Raja yoga–Internal and External yoga-Elements of Ashtanga yoga (Yama, Niyama, Asana, Pranayama, Prathyahara, Dharana, Dhyana and Samadhi)-Panchakoshas and their purification through Asana, Pranayama and Dhyana.

UNIT-II

Surya Namaskaras (Sun Salutations): Definition of sun salutations-7 chakras (Mooladhaar, Swadhishtaan, Manipura, Anahata, Visheddhi, Agnya and Sahasrar)- Various mantras (Om Mitraya, Om Ravaye, Om Suryaya, Om Bhanave, Om Marichay, Om Khagaye, Om Pushne, Om Hiranya Garbhaye, Om Adhityaya, Om Savitre, Om Arkhaya and Om Bhaskaraya) and their meaning while performing sun salutations-Physiology-7systems of human anatomy-Significance of performing sun salutations.

UNIT-III

Asan as (Postures): Pathanjali’s definition of asana-Sthiram Sukham Asanam-3rdlimbofAshtangayoga-Looseningorwarmingupexercises- Sequence of perform in as an as (Standing, Sitting, Prone, Supine and Inverted)-Nomenclature of as an as (animals, trees, rishis etc)-As an as versus Chakras-As an as versus systems-As an as versus physical health-Activation of Annamaya kosha

UNIT-IV

Pranayama (Breathing Techniques): Definition of Pranayama as per Shankaracharya-4th limb of Ashtanga yoga-Various techniques of breathing-Pranayama techniques versus seasons-Band has and their significance in Pranayama-Mudras and their significance in Pranayama-Restrictions of applying band has with reference to health disorders-Pranayama versus concentration-
Pranayama is the bridge between mind and body-Pranayam versus mental health-Activation of Pranamaya kosha through Pranayama.

UNIT-V
Dhyana (Meditation): Definition of meditation-7th limb of Ashtanga yoga- Types of mind (Conscious and Sub-Conscious)-various types of dhyana. Meditation versus spiritual health-Dharana and Dhyana-Extention of Dhyana to Samadhi-Dhyana and mental stress-Activation of Mano mayakosha through dhyana- Silencing the mind

Suggested Readings:
1. Light on Yoga by BKS iyengar
2. Yoga education for children Vol-1 by Swami Satyananda Saraswati
3. Light on Pranayama by BKS iyengar
4. Asana Pranayama Mudra and Bandha by Swami Satyananda Saraswati
5. Hatha Yoga Pradipika by Swami Mukhtibodhananda
7. Dynamics of yoga by Swami Satyananda Saraswati
Course Code | Course Title | Core/Elective
--- | --- | ---
MC 952 SP | NATIONAL SERVICE SCHEME (NSS) | Elective

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Contact hours per week</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L T D P</td>
<td>2</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Objectives:
- To help in Character Molding of students for the benefit of society
- To create awareness among students on various career options in different fields
- To remodel the students behavior with assertive skills and positive attitudes
- To aid students in developing skills like communication, personality, writing and soft skills
- To educate students towards importance of national integration, participating in electoral process etc. by making them to participate in observing important days.

Course Outcomes:
Student will be able to:
- Students will become more focused towards becoming excellent citizens with more and more discipline in their day-to-day life.
- An all-round development-physical, mental and spiritual health-takes place.
- Self-discipline and discipline with respect society enormously increases.
- University environment becomes more peaceful and harmonious.

List of Activities:
1. Orientation programme about the role of NSS in societal development
2. Swachh Bharath Programme
3. Guest lecture’s from eminent personalities on personality development
5. Imparting computer education to schoolchildren
6. Creating Awareness among students on the importance of Digital transactions
7. Stress management techniques
8. Health Checkup Activities
9. Observation of Important days like voters day, World Water Day etc.
10. Road Safety Awareness Programs
11. Energy Conservation Activities
12. Conducting Programme’ son effective communication skills
13. Awareness programme’s on national integration
14. Orientation on Improving Entrepreneurial Skills
15. Developing Effective Leadership skills
16. Job opportunity awareness programs in various defence, public sector undertakings
17. Skill Development Programmes
18. Creating awareness among students on the Importance of Yoga and other physical activities
19. Creating awareness among students on various governmentsponsoredsocialwelfare schemes for the people

Note: At least Ten Activities should be conducted in the Semester. Each event conducted under Swachh Barath, Plantation and important days like voters day, world water day may be treated as a separate activity.
Course Objectives:
- To develop an understanding of the importance of sport in the pursuit of a healthy and active lifestyle at the College and beyond.
- To develop an appreciation of the concepts of fair play, honest competition and good sportsmanship.
- To develop leadership skills and foster qualities of co-operation, tolerance, consideration, trust and responsibility when faced with group and team problem-solving tasks.
- To develop the capacity to maintain interest in a sport or sports and to persevere in order to achieve success.
- To prepare each student to be able to participate fully in the competitive, recreational and leisure opportunities offered outside the school environment.

Course Outcomes:
Student will be able to:
- Students' sports activities are an essential aspect of university education, one of the most efficient means to develop one's character and personal qualities, promote the fair game principles, and form an active life position.
- Over the past year, sports have become much more popular among our students. Let us remember the most memorable events related to sports and physical training.
- Special attention was paid to team sports. Our male and female games and sports have achieved remarkable progress at a number of competitions.
- Our teams in the main sports took part in regional and national competitions. Special thanks to our team in track and field athletics, which has been revitalized this year at ICT and which has won Javelin competition.
- Staff of our faculties and students of Sports, Physical Development, & Healthy Lifestyle of Faculty congratulates everyone on the upcoming New Year and wishes you robust health and new victories in whatever you conceive.

I. Requirements:
- Track Pant (students should bring)
- Shoes
- Volley Ball, Foot Ball and Badminton (Shuttle)
- Ground, Court, indoor stadium and swimming pool

II. Evaluation Process:

Total Marks 50
- i) 20 marks for internal exam (continuous evaluation) a) 8 marks for viva
 b) 12 marks for sports & fitness
- ii) 30 marks for exam a) 10 marks for viva
 b) 20 marks for sports & fitness
Course Code | Course Title | Core/Elective
--- | --- | ---
SI 671 EE | SUMMER INTERNSHIP | Core

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>L</th>
<th>T</th>
<th>D</th>
<th>P</th>
<th>CIE</th>
<th>SEE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>50</td>
<td>0</td>
<td>2*</td>
</tr>
</tbody>
</table>

Course Objectives: To prepare the students
- To give an experience to the students in solving real life practical problems with all its constraints.
- To give an opportunity to integrate different aspects of learning with reference to real life problems.
- To enhance the confidence of the students while communicating with industry engineers and give an opportunity for useful interaction with them and familiarize with work culture and ethics of the industry.

Course Outcomes: On successful completion of this course student will be
- Able to design/develop a small and simple product in hardware or software.
- Able to complete the task or realize a prespecified target, with limited scope, rather than taking up a complex task and leave it.
- Able to learn to find alternate viable solutions for a given problem and evaluate these alternatives with reference to prespecified criteria.
- Able to implement the selected solution and document the same.

Summer Internship is introduced as part of the curricula for encouraging students to work on problems of interest to industries. A batch of two or three students will be attached to a person from an Industry / R & D Organization / National Laboratory for a period of 4 weeks. This will be during the summer vacation following the completion of the VI semester course. One faculty member will act as an internal guide for each batch to monitor the progress and interacts with the Industry guide.

After the completion of the project, students will submit a brief technical report on the project executed and present the work through a seminar talk to be organized by the department. Award of sessional marks are based on the performance of the student at the work place and awarded by industry guide and internal guide (25 Marks) followed by presentation before the committee constituted by the department (25 Marks). One faculty member will coordinate the overall activity of Summer Internship.

Note: * Students have to undergo summer internship of four weeks duration at the end of semester VI and credits will be awarded after evaluation in VII semester.